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Abstract—An examination is made of the conduction between sliding solids with heat energy generated
along the region of contact. Based on a Green'’s function formulation, a Fredholm integral equation of the
first kind is derived and an asymptotic solution for the heat flux partition to each solid is obtained for
large Peclet numbers. By introducing further asymptotic approximations, closed-form expressions are
derived for the temperature fields in the solids. Comparison with a numerical solution indicates that the
asymptotic solutions are valid for Peclet numbers greater than ten, which covers most cases of practical
interest. In addition, an examination of the present solution reveals the inadequacy of the empirical
relations deduced by earlier workers for the estimation of the thermal penetration into the solids. An
appropriate parameter for this correlation is suggested.

1. INTRODUCTION

Numerous mechanical processes involve a solid slid-
ing over another with heat energy generated within
the contact region. In most cases, the heat transfer
around the contact region may be studied by exam-
ining the steady-state thermal exchanges between two
semi-infinite moving solids with plane boundaries
which are perfectly insulated except at the contact
region. Two aspects are of special importance in this
analysis : partition of the heat energy into each body
and the resultant temperature fields in the bodies.

The Peclet number, which depends on the thermal
properties and speeds of the solids, and on the contact
length, is the major non-dimensional parameter
governing the heat transfer mechanism in this system.
For very high speeds (hence large Peclet numbers), it
has been shown [1] that, in the context of strip rolling,
the problem can be further reduced to one of transient
one-dimensional heat conduction in stationary
bodies, i.e. the thermal diffusion term in the direction
of the motion is small compared to the advective
component. The solution [1] obtained in this sim-
plified model, however, only provides results within
the contact region, and no information can be derived
prior to and beyond the contact region.

Most of the other investigations which considered a
two-dimensional heat flow in moving bodies involved
approximations in predicting the partition of the heat
energy to the bodies. Early studies were reported by
Blok [2] and Jaeger [3] who expressed the surface
temperatures of each solid in terms of the surface heat
flux using a Green’s function formulation. Instead of
determining the heat flux partition by matching the
surface temperatures of the solids at all points along
the contact region, they estimated an overall heat
flux partition by matching either the maximum [2]
or average [3] surface temperatures of the solids in
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addition to assuming a uniform heat flux distribution
to each solid. In these studies, the heat source was
assumed to be stationary with respect to one of the
solids. This same problem was later extended to con-
sider a moving heat source with respect to both
solids, with the heat flux partition determined numeri-
cally by matching the surface temperatures of the
solids using collocation {4, 5].

On the other hand, in the context of thermal dam-
ages induced in the grinding process, the temperature
field in a moving solid with surface heat flux confined
to a finite region has been examined. Nearly all wor-
kers have used the Green’s function of the tem-
perature field proposed by Jaeger [3] as a starting
point. In most cases, numerical integration was per-
formed to determine the entire temperature field with
the heat flux distribution assumed to be uniform (e.g.
Takazawa [6]) although other distributions have also
been examined [7]. Empirical expressions have been
deduced from the numerical results [6, 7] as a means
of rapid evaluation of the peak temperatures and ther-
mal penetration into the solid. This approach has been
widely accepted in evaluating the thermal effects in
grinding [8-12].

Barber, in a recent paper {13}, discussed the effects
of a difference in the bulk temperatures of the solids
as well as the subsurface heat generation within the
contact region. The analysis was also extended to the
case of multiple contacting areas.

More recently, an asymptotic solution was
developed in refs. [14, 15}, for large Peclet numbers,
for a system of sliding bodies in contact as discussed
above (with no heat generation along the contact),
where the bulk temperatures of the solids are different.
The partitioning of the heat flux to each solid was
deduced [14] and expressions for the resulting tem-
perature fields of the solids were obtained [15].

In this paper, the thermal exchanges between two
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NOMENCLATURE
f(x) 6T ,(x,0)/0y, equation (15) temperature attained at a depth, y,
So(x), fi(x),... functions defined in from the surface of body i
equation (24) T3 bulk temperature
go(X),g:(x) functions defined in equations v° speed
(17) and (32) X,y Cartesian coordinate pair,
g.(u) function defined in equation (46) nondimensionalized with the
I f(x)] integral defined in equation (13) contact length, /
Lif(X)],....[.]f(x)] integrals defined in x°,y° Cartesian coordinate pair, Fig. 1
equations (19)—(22) Xm x-coordinate at which the
k thermal conductivity temperature change on the body
k, ratio of thermal conductivity of surface within the contact region is
body 2 to that of body 1, k,/k,, a maximum, equation (39)
equation (10) x(¥) x-coordinate at which the
l contact length temperature change at a depth, y,
P Peclet number, 3v°/a, equation (3) from the surface is a maximum,
P, ratio of Peclet number of body 1 to equation (54).
that of body 2, P,/P,, equation
.(28) . . . . Greek symbols
9o intensity of the non-dimensionalized T
uniform heat flux generation * thermal diffusivity
B,B., B, terms defined in equations (27), (34)
along the contact .
. . . and (35), respectively
q(x) non-dimensionalized heat flux .
. £1,8, small terms defined for integrals of
generation along the contact, .
. equations (19)-(22)
equation (11) E(x, y) 3 Py?/x, equation (51)
q°(x" heat flux generation along the ’ 2 ’ .
0,0 polar coordinates defined by
contact equations (41) and (42)
r P(x*+y%)"", equation (44) d ,
. : vi(x,y) temperature, T,(x, y), of body i, as a
T(x,y) dimensionless temperature change, . . :
0 0N D . fraction of its maximum
(T"—Tw)/ T, equation (1) temperature, T,,, equation (37)
T°(x% y° temperature p » Lmr €4 :
Tim maximum non-dimensionalized
temperature reached on the Subscripts (unless defined above)
surface of body i, equation (38) 1 body 1
To(») (T3, —Tg)/TR, equation (56) 2 body 2
T (» maximum i body i.
P . . . Y
semi-infinite solids with heat generation at the contact
region are examined. A more formal approach in Bulk temperature, T2
determining the heat flux partition is formulated and Body 1
the temperature fields in the solids are evatuated. This = Vix  borfect Pertect
analysis, although developed in the context of strip e ortoct f
rolling, also finds applications in other areas such as ©
thermal considerations in grinding, machining, and neat souie
highly loaded gear teeth, cams and tappets. along contact
-1 v2x
Body 2
2. PROBLEM FORMULATION Bulk temperature, T3

Consider two moving semi-infinite solids with plane
boundaries being in perfect contact over a fixed finite
region. Let the x%-axis be aligned with the plane of
contact and the solids be moving at uniform speeds,
v} and v}, respectively, in the x°-direction. The origin
of the Cartesian coordinate system (x°-y°) is selected
at the leading edge of the contact region (0 < x° </,
where /is the contact length), along which heat energy

FiG. 1. Thermal system under study.

is generated, as shown in Fig. 1. It is assumed that
there is no thermal variation in a direction normal to
the x°-y° plane and thus a two-dimensional analysis
may be adopted.

The temperature fields in the two bodies may be
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written in terms of their temperature gradients (with
respect to »°) along the contact region based on a
Green’s function formulation {3, 14], thus

T(x.) e M
_ $ lJ‘l 6T,(x”0) epl(x_x,)
T Jo ay
X K(){Pi[(x_x/)2 +y2]l/2} dx" (2)
where
vl
P = 20‘:‘ (3)
xO
x=- “
and
yO
y=. (%)

Here subscript i = 1, 2, and the upper and lower signs
in equation (2), refer to bodies 1 and 2, respectively;
T?(x, ) is the temperature of body i; T} the uniform
bulk temperature of the bodies ; P, the Peclet number
based on half the contact length ; «; the thermal diffu-
sivity and K,() is the modified Bessel function of the
second kind.

The boundary conditions, in their non-dimen-
sionalized form, are

T(—00,y)=Ty(—0o0,)=0 (6)
T oT.
0 _ L&D _ g for x<0,x>1 (1)
oy dy
Ty(x,0) = To(x,0) for 0 <x <1 (8)
0T (x,0) 0T,(x,0)
~ o +k, 3 =gq(x) for 0<x<1
)
where
k,
k.= k (10)
and
I4°(x°)
= 11
409 =7 an

Here k; is the thermal conductivity of body i, and
q°(x®) is the rate of heat generation (per unit area) at
the contact region.

The boundary conditions of equations (6) and (7)
stipulate that the body temperatures are equal to the
bulk temperatures far upstream and that the surface
along y = 0 is insulated outside the contact region;
these are satisfied by equation (2) implicitly as a result
of a proper choice of Green’s function. Those of equa-
tions (8) and (9) specify the conditions of continuity of
temperatures along the contact region (perfect contact
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assumed) and conservation of heat fluxes, respec-
tively.

3. HEAT FLUX ALONG
THE CONTACT REGION

On elimination of 0T,(x, 0)/dy from equations (2),
(8) and (9), a Fredholm integral equation of the first
kind in the unknown function 07, (x, 0)/dy is obtained

1 1 /
Il[f(-x)]+ k_Iz[f(x)] = — kvL q(x) ePz(xAx)
x Ko(Palx—x)dx for 0<x<1 (12)

where

I f(x)] = L F(x) S Ky(Pix—x)dx’ (13)
= '[ " Fe—u) e Ko(Pa) du

-*—J;l _Xf(x+u) e FUKy(Puydu (14)
and
(15)
If the heat generation may be assumed uniform, i.e.

q(x) = g,, the right-hand side of equation (12) may
be integrated readily, giving

L@ 3 B0 = o) for0<x<1

(16)
where
9o(x) = — T2 {xe™ [Ko(Pox+ Ky (Py)
+(1=x)e "9 [Ky(Pa{l —x})
—K\(P>{1 -]} a7

An asymptotic solution of f(x) will be derived below
for large Peclet numbers, P, and P, (the Peclet num-
bers are in the range of 4000 to 60000 in the case of
strip rolling). The kernel of the integral () consists
of the modified Bessel function which, although being
singular at x’ = x, decreases rapidly to zero when
x" # x for large P,. Thus, a solution which is valid for
regions away from the leading and trailing edges of
the contact region (i.e. Px and P,(1 —x) » 1) is firstly
sought and the correction terms for the small leading
and trailing edge regions are then examined.

Consider the region ¢, < x « (1 —¢,), where 0 < (g,
&) « 1 but Pg, and Pe, » 1 (i = 1, 2). Following ref.
[14], the integrals of equation (14) may be divided up
as follows:

ILf )] = Il f O+ 1oL f (O] + Ll f GOl Ll f ()]
(18)
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where
I ()] = f ' f—uy et Ko(Paydu  (19)
I/ (9] = J Fle—u)e™ Ko(Puydu  (20)
I L/ (0] = f " fcru)e = Ko(Paydu (21)
and
Llf (] = J ety e Ko(Par) du. (22)

It is shown in ref. [14] that, for P, and Pg, » 1, the
sum of I,,[f(x)] and I3[ f(x)] consists of ¢,- and &,-
dependent terms only. Thus, equation (16) reduces to

Lol (Ol + Ll fF ()1 + {Izz[f(X)
+ Ll f ()]} = golx)+&,,€5-terms.  (23)
Now, let
T ) = fo)+fi(x)+ 0+ 24
where
fx)=o0[fi,(x)] for i=1,2,3,... (25

By expanding asymptotically the Bessel functions in
Io[ £ ()], LaLf (x)] and g4(x) for large arguments, and
retaining only the leading order terms, equation (23)
becomes

j % = —2fx"?4¢-terms  (26)
where
and
P = ; (28)

Now, provided that the integral of equation (26) is
integrable at the origin, it may be written as the differ-
ence between an integral of the integrand from 0 to x
and one from 0 to ¢,, the latter obviously consisting
only of ¢,-dependent terms which must cancel out
with those on the right-hand side of equation (26),

thus
Jox—w) o /
J : a7 = —2fx'""? (29)
which may be solved readily, giving
Jo(x) = —B. (30)

Hence the leading order term of the heat flux to solid

1 along the contact region is a constant, signifying
that a uniform heat energy generation would result in
a largely uniform heat flux distribution to the two
bodies. This result, obtained through a rigorous
asymptotic analysis, agrees with that suggested by
Blok [2] and Symm [5] who matched only the
maximum surface temperatures of the solids.

The integral equation for the higher order of f(x)
may be obtained by substituting equation (30) into
equation (16) and retaining the leading order terms
of the resultant equation, giving

1
LA+ (00 + -]+ Elz[fx(x)
+ X))+ ]=g:x) for 0<x<1 (31)
where
91(x) = p{xe"*[Ky(P,x)+ K\(Px)]

+(1—=x)e P TIK(P {1 -x})
—K\(P\{1-x)])
— PP {xef"[Ko(Pyx)+ K (Pyx))
+(1=x)e P2 I[Ko(P{1—x})
—K\(P{1-x})]}. (32)

It is obvious from the integral equation (31), which is
valid for the entire contact region, and the definition
of g,(x) that f(x)=0, for n=1,2,3,..., when
P. =1, 1.e. fo(x) is an exact solution of equation (16)
as long as the Peclet numbers of the solids are iden-
tical. In addition, it may be shown that g,(x) is at least
O(P7"?) of go(x), except in regions very close to the
entry zone with P, > 1. In view of the application
intended in this analysis where P, and P, are large and
P, does not normally vary significantly from unity, the
correction term contributed from g,(x) is not further
examined here.

A numerical scheme, which solves an integral equa-
tion of the form of equation (12) with a general right-
hand side function, has been devised {16] to study heat
conduction in sliding bodies with more complicated
heat source distributions. Here, the heat flux to solid
1 calculated from equation (30) is compared with
the numerical solution in an attempt to examine the
regions of validity of the asymptotic solution. It can
be seen from the illustration given in Fig. 2 that the
two solutions yield excellent agreement when the
Peclet numbers of the solids are equal. When P, # P,,
deviations of the asymptotic solution from the
numerical solution are observed, especially around
the leading and trailing edges of the contact region.
These deviations increase as the Peclet number, P, of
solid 1 becomes small, when the ratio of the Peclet
numbers, P,/P,, is small or when the ratio of the
thermal conductivities, k., is large. For the application
intended, where P, and P, are large and &, and P, are
of order unity, the asymptotic solution of equation
(30) is considered satisfactory. In addition, the small
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FiG. 2. A comparison of the asymptotic solution with the
numerical solution for the heat flux to solid 1.

deviations for the heat flux near the edges of the con-
tact region would not cause significant errors in the
subsequent evaluation of the temperatures in the
solids, as will be illustrated in the next section.

4. TEMPERATURE DISTRIBUTION

4.1. Temperatures along the surfaces

The leading order of the heat flux distribution to
body 1, f4(x), along the contact may be substituted
into equation (2) in order to evaluate the temperature
fields of the bodies. The integral in equation (2) cannot
be evaluated analytically in general, but expressions
for the surface temperatures (y = 0) may be derived
readily, giving

[ B{1xle~ "MK (Plx]) — Kol Px])]
— (1 +|x) e‘P"(H'"")[K.(Pi{l +|x1})
—Ko(P {1+1x]}]} for x <0
B{x P [Ko(Px)+ K (Px)]
+(1=x)e "UTI[K(P{1—x})
—K(P{1—-x})]} for0<x<1
B{x e [Ko(Pix) + K (Px)]
—(x—1) e V[K(P{x—1})
+K,(P{x—1})} forx>1

T(x,0) = 1

(33)

where
_ B _ L)
b= n a(l+kPYV? (34)
and
pli2 P2
B, = BP:" _ 4o (35)

n  r(l+kPN’

Here K,() is the modified Bessel function of the
second kind of first order.

For regions remote from the leading and trailing
edges of the contact (more precisely, when PJx| and
P|1—x| » 1), equations (33) may be further simpli-

fied, giving
Bl m N7 an
i — 2P }x]
2P, <2P,-lx|> ¢

for Px « —1

-

2 1/2
T(x,0) = < [ii(?) for Px>»1; P{1—x) > 1

1/2
o) o

f

for P{x—1) > 1. (36)

A comparison of the analytical solution of equations
(33) with the numerical solution of ref. [16], as shown
in Fig. 3, produces excellent agreement for a wide
range of k, and P, values as long as the Peclet numbers
are reasonably large. In this illustration, the non-dimen-
sionalized surface temperature has been normalized
with respect to the asymptotic peak temperature (also
known as the flash temperature [17} in the context of
scuffing and wear), 7, thus

Ti(x,
b y) = T a7
where
2n\/?
ro=n(2) (9)

such that ¢, < 1. It can be seen that the peak tem-
perature on the surface is located near the trailing
edge of the contact region when the Peclet number is
large, and that it shifts back towards the centre of the
contact region as P, is reduced to unity, with its value
being smaller than the asymptotic prediction. Hence
equations (33) (and equations (36) when applicable),
which provide closed-form expressions for the surface
temperatures of the solids, are valid for most appli-
cations. The peak temperature in the solid, 7,,, can
be shown to occur on the body surface within the
contact region, thus it can be readily evaluated from
equations (33) after its location, X,,, is determined. It
is found, by setting 6T (x, 0)/dx = 0 in the second of
equations (33), that x,, is the solution of the equation :

" Ko(Pixa) = Ko[Pi(1 —x.,)]. (39
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A plot of the variation of x,, with P, and the associated
peak temperature is shown in Fig. 4. When the Peclet
number is extremely small (note that in this case P,
should be very close to unity for the solution to be
valid), the maximum temperature occurs at the mid-
point of the contact with a value well below the asymp-

W. Y. D Yuen

totic prediction. As P, increases, x,, mmoves towards the
trailing edge and the asymptotic value is approached.
This observation has also been discussed by previous
workers {e.g. Jaeger [3]).

4.2. Temperature field of the entire body

The temperature field of body i, based on the lead-
ing order of the heat flux distribution, f(x), is, from
equation {2)

H
Tdx,y) = BKL efix=x)

X Ko{P[(x—x)2 4+ dx’.  (40)

Approximations to the above integral are now in-
troduced in the various regions in order to obtain
closed-form expressions. In view of the insignificant
temperature change prior to the contact region
(x < 0) for large Peclet numbers (Fig. 3), details of
the temperature in this region will not be sought here.
(a) Within the contact region (0 < x < 1). Let
x=pcosh {4n

and
y=psinf (42)

such that 0 < |8 £ 37 and the temperature field is
then given by

tip
e ~r{u—cosHh

T{x, ) = Bip L

% Ko[ri(u® —2ucos 8+ 1)"*du  (43)
where
ri=FPp (44
and
p= (x4 (45)

Reference [I5] has shown that since 7, is generally
large and | « ! in the region of interest {the thermal
penetration in the y-direction is of the order of P72
[1]), the integrand in equation (43) may be approxi-
mated by

(_n_)'“ exp [—2r;sin’ (30)/(1 ~u)]

2, {1—w)"?
=
g2 for O<u<l (46)
0 for u>1.
Thus
PN
Tixp) ~ §(§§>
Vexp [—2r;5in? (36)/(1 — )]
XJ; T du (47

which can be integrated after a substitution w =
{(1—w)" ' is made, giving
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2p 1/2
T(x,y) = nﬁ,.(F) ierfc [2P;psin® (30)]"*  (48)

where ierfc() is the repeated integral of the error func-
tion.

In the region of interest, | y| « x and equation (48)
can be further simplified, giving

2 i/2 P 2\1/2
T{x, ) ~ xﬂ,-(—%) ierfc( éi ) .49

The above solution agrees with that of ref. [1]in which
the thermal diffusion along the direction of body
motion is ignored. It is also noted that equation (49)
degenerates to equation (36), when y = 0.

{b) Beyond the contact region {x > 1). For regions
away from the trailing edge of the contact
(P(x—1)» 1), the modified Bessel function in the
integral of equation (40) may be expanded for large
argument, and in the region of interest (| y| « x) with
P, > 1, the integrand may be approximated and equa-
tion (40) is reduced to

et

e V2 B Yix— 1) o
Ti(x,)’)"*ﬁi(i‘ﬁ) e~ X mdu (50}

where

P 2

&= 8x) = S5

(51

The integral in equation (50) may be readily evalu-
ated, giving

1/2
T(x.y) = nﬁ@?‘) [ierfc @

_.(%)” jerfe (‘f‘}%l)” ] (52)

It is obvious that equation (52) degenerates to equa-
tion (36); when y =0 (thus £, = 0). In addition, it
agrees with equation (49) at the trailing edge of the
contact region (x = 1).

The entire temperature field as calculated from the
asymptotic solutions (equations (48) and (52)) has
been compared and found to agree well with the
numerical solution of ref. [16] for a wide range of &,
and P, values and for Peclet numbers reduced to as
low as 10. An illustration of the comparisons is given
in Fig. 5. For low Peclet numbers, slight deviations
are observed at the leading and trailing edges of the
contact region. These arise since the thermal diffusion
in the x-direction becomes important when the Peclet
numbers are small (the diffusion term becomes sig-
nificant compared to the advective term in the regions
0< Plx} £ 0() and 0< Pll—x| < O(1), respec-
tively).

The comparison shown in Fig. 5 also reinforces the
suggestion made earlier that, for high Peclet numbers,
retention of only the leading order term of the heat
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FiG. 5. A comparison of the analytical solution with the
numerical solution for the temperatures in the body
(Py=P,=P).

flux distribution to the bodies is sufficient in cal-
culating the temperature field.

Of interest is the thermal penetration below the
surface of the solids. It has been demonstrated earlier
that the surface temperature reaches a maximum
within the contact zone and its location approaches
the trailing edge (x = 1) when the Peclet numbers are
large. From Fig. §, it is obvious that the maximum
temperature that a point at a specified depth below
the surface would reach will be located beyond the
contact region when the Peclet number is large. This
location, x,, may be determined by finding, for a given
¥, a local maximum of the temperature with respect
to x. Thus, from equation (52)

aT, 2r\/?
ox = 5“(?’?)
(53)

which, when set to zero, vields an equation for the
solution of x,

€xp (_éi —x“">
exp (—¢) x—1
27T 2x—D?

xp(xp—x)m( T ) =P (54)
x,—1

The variations of the maximum temperature and its
corresponding location with the depth below the sur-
face are given in Fig. 6. It can be seen that the thermal
penetration is inversely proportional to P//2, thus the
higher the speed of the solid, the smaller are the ther-
mal effects (relative to the surface temperature) below
the surface.

Similar studies have been carried out in relation to
the grinding process by other workers. With numeri-
cal integration of equation (40) assuming a uniform
heat flux distribution to a solid, empirical expressions
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FIG. 6. Variation of (a) the location, x,, of the maximum
temperature, and (b) the associated value, 7,(v), with the
depth below the surface, y.

for the maximum temperatures, T, were fitted in
terms of the Peclet number, P, for a specified depth,
v, below the surface. On writing those results in the

present notation, we obtain, from Takazawa [6]

kv,

P,
300 To = TO= 4T

g
=3.10P)"Vexp [—0.69(P) (P y)]

for 2< P, <160 and 0 < P,y <4 (55)
where ¢/ is the rate of heat transfer to body i along
the contact region, T, the maximum temperature
reached, and 7, the non-dimensionalized temperature
given by

T9-T}

T, Tg¥

ip =

(56)

and, from Maris [7], as quoted by Snoeys et al. [10]
[ 0.66(1P)% %% exp[—0.15(,P,)~ “O%(P,y)]
for 10 < P,< 80 and 4 < P,y < 10
0.355(1P) """ exp [—0.08(3P) " *44(P,1)]
for 10 < P, < 80 and 10 < P,y <20
1.64(3P)% %7 exp [—0.0288(1P) " 2**(P, )]
for 80 < P, < 160 and 4 < P,y < 10
0.079(1P) "+ exp [—0.0187(} P)"**(P,y)]

L for 80 < P, < 160 and 10 < P,y < 20.
(57)

X

ip

=

Here T, is the maximum temperature reached for a
point at a distance y below the surface. In particular,
the third coefficient in equation (57), has been
changed to 0.0288, instead of the value of 0.288 as
quoted by Snoeys et al. [10], in order for a reasonable
agreement with the present solution to be obtained.
The above expressions are also plotted in Fig. 6
within their regions of validity for comparison, and
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FiG. 7. A comparison of the empirically derived maximum
temperatures with those from the asymptotic solution.

generally good agreement is obtained. The slight dis-
crepancies observed in these comparisons could be
largely due to inaccuracies involved in the numerical
integration and curve fitting by a limited number of
expressions in the previous works [6, 7). Thus, the
solution presented here provides a more logical
approach in estimating the maximum temperature in
the solid: the location, x,, of the maximum tem-
perature is determined from equation (54), followed
by calculating its value from equation (52). Moreover,
if it were desirable to develop an empirical expression
for rapid determination of these peak temperatures,
it is obvious that the peak temperature should be
related to the parameter P/?y. Only a single
expression is then sufficient to cover a wide range of
P, and y (cf. relations each deduced for a narrow
region of validity previously [6, 7]). One such
expression is

T, AN
o N

\p

= exp[— 1.507P2y+0.3610(P, *y)?

—0.0446(P;"?y)* +0.00208(P;*y)*] (58)

for 0 < (P}?y) < 8. A comparison of equation (58)
with the asymptotic solution is shown in Fig. 7.
Indeed, excellent agreement is obtained.

5. CONCLUSION

The conduction of heat in sliding solids with heat
energy generation along the contact region is exam-
ined in this paper. An asymptotic solution for large
Peclet numbers is derived for the heat flux partition
to the solids. It is demonstrated that, with a uniform
heat source, the heat flux partition to the solids is
essentially uniform and is governed by the parameter
kP"? of each solid (where k is the thermal con-
ductivity and P the Peclet number).

On introducing further approximations for large
Peclet numbers, closed-form expressions for the tem-
perature fields in the solids are deduced. Peak tem-
peratures at specified positions below the solids are
also predicted and an appropriate parameter, which
offers much improvement over those suggested by
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previous workers, for the correlation of the peak tem-
peratures is suggested.

The asymptotic solutions obtained in this paper
have been checked with a numerical solution, and
found to be valid for Peclet numbers greater than 10.
While this study has been carried out in the context of
strip rolling in which the Peclet numbers are extremely
high (in the range 4000 to 60 000), the solutions can
also be applied to the examination of thermal effects in
other relevant processes such as grinding, machining,
rubbing in gear teeth and cams, in which cases the
Peclet numbers are usually higher than 10.

Similar thermal problems arising from certain
mechanical processes can be formulated and an
asymptotic solution deduced with the technique dis-
cussed in this paper. The more notable ones are the
heat transfer in sliding bodies where the two bodies
have different bulk temperatures (this problem has been
discussed in ref. [14]) and/or where heat energy is
generated in one or both bodies due to deformation.
An associated problem, where the bodies move in
opposite directions relative to the contact area, for
which the grinding process is a classical example, can
be formulated in a similar manner. However, the
asymptotic analysis following the same procedure dis-
cussed in this paper leads to an integral equation
having a form which would need to be solved numeri-
cally or by a technique involving complex analysis.
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CONDUCTION THERMIQUE DANS DES SOLIDES GLISSANTS

Résumé—On considére la conduction entre des solides glissants avec la formulation de chaleur le long de
la surface de contact. A partir de la formulation de la fonction de Green, on obtient une équation intégrale
de Fredholm de premiére espéce ainsi qu’une solution asymptotique pour la partition entre chaque solide
est obtenue pour de grands nombres de Péclet. En introduisant des approximations asymptotiques, des
expressions exactes sont dérivées pour le champ de température dans les solides. Une comparaison avec
une solution numérique indique que les solutions asymptotiques sont valables pour des nombres de Péclet
supérieur a 10, ce qui couvre la plupart des cas d’intérét pratique. De plus, un examen de la présente solution
révéle linadéquation des relations empiriques déduites par les premiers chercheurs pour I'estimation de
la pénétration thermique dans les solides. On suggére un paramétre approprié pour cette corrélation.

WARMELEITUNG IN UBEREINANDER GLEITENDEN FESTKORPERN

Zusammenfassung—Es wurde eine Untersuchung der Wirmeleitung in ibereinander gleitenden Fest-
kdrpern durchgefiihrt, in deren Kontaktbereich Warme freigesetzt wird. Basierend auf den Green’schen
Funktionen wurde eine Fredholm-Integraigleichung erster Ordnung hergeleitet und eine asymptotische
Losung fiir den jeweiligen Anteil des Warmestroms in die beiden Ko6rper fiir groBe Peclet-Zahlen ermittelt.
Durch Einfiihren zusétzlicher asymptotischer Ndherungen wurden Ausdriicke in geschlossener Form fiir
das Temperaturfeld in den Festkorpern abgeleitet. Der Vergleich mit einer numerischen Losung deutet
darauf hin, daB die asymptotischen Lésungen fiir Peclet-Zahlen groBer als 10 giiltig sind, was die meisten
Fille des praktischen Interesses abdeckt. Zusitzlich offenbart eine Uberpriifung mit der vorliegenden
Lésung die Unzulinglichkeit der empirischen Beziehungen, die in vorangegangenen Arbeiten fiir das
Eindringen von Wirme in die K6rper hergeleitet wurden. Fiir die Korrelation wird ein geeigneter Parameter
vorgeschlagen.
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TEIJIONMPOBOAHOCTDb TBEPALIX TEJI INPHU CKOJIBXXEHUH

Amnorauus—IIpoBeeHO HMCCAeIOBaHHE MNepeJa4d TeIa TEIIONPOBOAHOCTBIO MEXAY TEJNAMH MpH
CKOJIBXKEHHH, Koraa B oOmacTH MXx KOHTAKTa BbIACNAECTCA TelMoBaf dHeprud. C IMOMOIIbIO METOAA
dyuxkumit [puHa BblBEeIEHO MHTETPAIbHOE ypaBHeHHe dpearonpMa nepsoro poaa, ¥ s 6oibIIHX YiCen
Mekne noayyeHo aCHMNTOTHYECKOE pPEHICHHE, ONpPEACNAIOLUCE PAacTpeie/ieHHe TIOTOKA TEMaa B KaxIaoM
13 tes. C HCMOJIb30BaHHEM ACHMITOTHYECKUX NPUOIHXEHUR MONyYeHb! B 33AMKHYTOM BHIE BbIPaXeHNS
Ul paclpesesieHuil TeMnepaTyp B TBEpAbIX Teiax. CpaBHEHHE ¢ YHC/ICHHBIM pEIliEHHEM MOKa3bIBaeT,
4TO aCHMITOTHYECKOE ONHCaHHE CTIPaBERIMBO I 3HayeHu yncna Ileke, npeppinaromux 10, T.e. Tex
3HAYEHMH, KOTOPbIE Yallle BCEro BCTPe4atoTcs Ha npakTuke. KpoMe Toro, aHaaHM3 mOJTy4eHHOro pelueHHs
MO3BOJIHIT BBIABUTH HEAAEKBATHOCTh PaHee NPEIIOKEHHBIX IMITHPHYECKHX COOTHOLUEHHH, HCIO/Ib30BAB-
LIAXCA [UIA OLIEHKH paclpenesieHUs Telula B KOHTAaKTHUPYIOWAX Tejax. Ui KOppelsUuuH MpennoxeH
COOTBETCTBYIOLLMiT MapameTp.



